Name:	Class:	Class: Date:		
		Mark	/ 18	%
1) Write down the expansion of the following using Pascal's triangle $(c+3)^4$				[1]
	It of x^3 in the expansion of the f	ollowing using Pascal's tr	riangle	[1]
3) Expand fully the f $(1 + 3x)(1 - 2x)^4$	-			[1]
4) The coefficient of x^2 in the expansion $(d - x)^3$ is -9. Find the value of d.				[1]
5) The coefficient of x^2 in the expansion $(2 + ax)^3$ is 6. Find the values of <i>a</i> .				[1]
6) Find the value of the following				[3]
a) $\frac{14!}{11!}$				
b) $\frac{8!}{(8-5)!5!}$				
c) $\binom{6}{5}$				
7) Find the value of <i>n</i> given that ${}^{n}C_{2} = 171$.				[1]

8) Write down the expansion of the following using the binomial expansion [2]
a) (q + r)⁴
b) (5 + 2q)³
9) Find the coefficient of x³ in the following [1]
(1 + x)⁵
10) Find the first four terms of the following using the binomial expansion [3]

a) $(x + 3y)^6$ b) $(5 - \frac{1}{5}x)^5$ c) $(1 - 3x)^{10}$

11) The coefficient of x^3 in the expansion $(1 + dx)^7$ is 945. Find the value of d. [1]

12) Write down the first four terms in the expansion $\left(1 + \frac{1}{5}x\right)^7$ and then by substituting a appropriate value of *x*, find an approximate value of $(1.17)^7$.

[1] **13)** If x is so small that terms of x^3 and higher can be ignored and $(2 + 3x)(1 - 3x)^3 \approx a + bx + cx^2$. Find the values of a, b and c.

[1]

Solutions for the assessment 5. The Binomial Expansion

1) The expansion is
$$c^4 + 12c^3 + 54c^2 + 108c + 81$$

3) The expansion is $1 - 5x + 40x^3 - 80x^4 + 48x^5$
5) $a = 1$ or $a = -1$
6) a) $\frac{14!}{11!} = 2184$
c) $\binom{6}{5} = 6$
7) $n = 19$
8) a) The expansion is $q^4 + 4q^3r + 6q^2r^2 + 4qr^3 + r^4$
b) The expansion is $125 + 150q + 60q^2 + 8q^3$
9) The coefficient of x^3 is 10
10) a) The expansion is $x^6 + 18x^5y + 135x^4y^2 + 540x^3y^3$
b) The expansion is $3125 - 625x + 50x^2 - 2x^3$
c) The expansion is $1 - 30x + 405x^2 - 3240x^3$
11) $d = 3$
12)

The expansion is $1 + \frac{7}{5}x + \frac{21}{25}x^2 + \frac{7}{25}x^3$ The approximate value of $(1.17)^7$ is 2.968855

13) a = 2, b = -15 and c = 27

Copyright Mathster.com 2014. Licensed by Your School with permission to redistribute